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Abstract 

The elastic modulus o[' ceramic injection moulding 
compositions with ceramic" volume fractions from 0 to 
0"56 were measured in the temperature range .from 
2 0 C  to the softening point o f  144°C. The uniaxial 
/i'acture strength ojthe most concentrated suspension 
was measured in the same temperature range. 
Poisson's ratio was obtained by a strain gauge method 
in which the electrical heating effect o f  the gauge was 
controlled. The results are compared with model 
predictions in order that such data can be obtained for 
diverse suspensions .[kom a minimum of  measure- 
ments. Such results are necessao' for the anaO'sis o f  
residual stress and hence cracking during the solidi- 
fication stage o f  ceramic injection moulding. 

Der Elastizitdtsmodul keramischer Spritzguflmassen 
mit einem keramischen Volumenanteil yon 0 bis 0"56 
wurde im Temperaturbereich yon 20°C bis zum 
Erweichungspunkt bei 144°C gemessen. Die Zug- 

fi, stigkeit des Materials mit dem hdchsten Feststoff- 
anteil wurde im gleichen Temperaturbereich ge- 
messen. Die Querdehnungszahl wurde mittels 
Dehnungsmeflstre(fen bestimmt, wobei die elektrische 
At4/heizung des Stre([k, ns kontrolliert wurde. Die 
Ergebnisse werden mit Modellrechnungen ver- 
gleichen, damit derartige Daten fiir verschiedene 
Suspensionen mit minimalem Meflau[wand gewonnen 
werden kgnnen. Diese Daten werden bengtigt, um die 
beim Spritzgiessen wdhrend des Erhdrtens au[tre- 
tenden Restspannungen zu beurteilen und die damit 
w'rbundene Riflbildung zu vermeiden. 

On a mesurO le module ~;lastique de mOlanges destinOs 
au moulage par injection possOdant des teneurs en 
cf'ramique allant de 0 ~l 0"56, dans un intervalle de 
tempOratures allant de 20 ?~ 144°C (point de 
ramolissement). La r~sistance d~ la rupture uniaxiale 

des suspensions les plus concentr~es (l Otc; mesurOe 
dans la mdme gamme de tempdratures. Le coefficient 
de poisson a {tO estimk ?l l'aide d'une m{thode dejauge 
de tension dans laquelle l'effet d'OchaufJement Olec- 
trique de la jauge Otait contr61~. On compare les 
r~;sultats ohtenus avec les prOdictions des modOles de 
.f~tgon ?lce que de relies donnOes puissent ~tre obtenues 
pour diverses suspensions h partir d'un minimum de 
mesures. Ces r~;sultats sont n~cessaires pour l'analyse 
des contraintes r~siduelles et, par consOquent pour 
celle de la [issuration pouvant se produire lors de 
l'Otape de solidification des cOramiques Olabor~es par 
moulage par ilT/ection. 

1 Introduction 

155 

The defects which originate in large ceramic 
components prepared by injection moulding can be 
related in part to the non-uniform shrinkage which 
takes place at the solidification stage. ~'2 They take 
the form of voids which result from the fall in 
pressure as occluded liquid solidifies or alternatively 
cracks which originate from stresses developed 
during solidification. The effects of material pro- 
perties and machine conditions on these defects can 
be explored using computer programs which model 
the solidification stage. 3 Such models require a large 
number of material properties for ceramic sus- 
pensions, including thermal diffusivity, equation of 
state and mechanical properties. Considerable 
experimental work is therefore needed to obtain 
meaningful values of these properties before com- 
puter modelling can be used. Previous work has 
shown how thermal diffusivity and equation of state 
can be predicted from a minimum of experi- 
mentation by using ceramic volume fraction de- 
pendence laws and group contributions for organic 
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species. 4'5 The present work extends this approach 
for the acquisition of mechanical properties of 
ceramic suspensions in order that stress distributions 
in simple shapes can be predicted. 

2 Experimental Details 

2.1 Preparation of suspension and samples 
The alumina was grade RA6 and was kindly 
donated by Alcan Chemicals Ltd (Gerrards Cross, 
UK). The isotactic and atactic polypropylenes were 
grade GY545M from ICI (Welwyn Garden City, 
UK) and grade MF5 from APP Chemicals (Salop, 
UK) respectively. The lubricant was stearic acid 
from BDH Chemicals (Poole, UK). The ceramic 
volume fraction in the suspensions is shown in 
Table 1. The organic vehicle was atactic poly- 
propylene, isotactic polypropylene and stearic acid 
in the ratios 4:4:1 for all suspensions and the exact 
alumina volume loading was obtained from 7 or 8 
ashing experiments. Premixing used a Henschel 
high-speed mixer and compounding used a twin- 
screw extruder following the procedure described 
previously. 6 

Samples for mechanical property measurement 
were prepared by using injection moulding or 
compression moulding. Compositions 1 and 6 were 
prepared by injection moulding standard tensile test 
samples (3 m m x  12 mm section) using a Negri Bossi 
NB90 machine at an injection temperature of 
200°C. Compositions 2 to 5 were prepared in the 
form of 3-ram sheets by compression moulding at 
temperatures from 180°C to 210°C depending on 
ceramic volume loading. From these sheets, bars of 
length 150mm and width 12mm were cut. 

2.2 Measurement of Poisson's ratio 
Poisson's ratio of all the compositions was measured 
by using a four-point bending method with inner 
supports separated by 40mm. The tensile and 
compressive strains were measured by using GFCA- 
3-70 strain gauges from Tokyo Sokki Kenkyujo Co., 

Table 1. Volume fraction of alumina 

Composition number Al203 (voL%) 

1 0 
2 24.3 _+ 0.1 (7) 
3 40.4 + 0"8 (7) 
4 49.7 _+ 0.2 (8) 
5 51'3 _+ 0"1 (7) 
6 56.4 _+ 0.7 (8) 

95% Confidence limits are given. The number of ashing 
experiments is given in brackets. 

Ltd, with gauge resistance 120 + 0.5 f~, gauge length 
3 mm and gauge factor 2.12. 

The change in gauge resistance was measured 
using a Wheatstone bridge constructed from wire 
wound resistors and supplied by a variable voltage 
power supply in order that the power dissipated in 
the gauge could be controlled. The bridge was 
calibrated using an ENIA steel beam in four-point 
bending with a section of 6ram x 30mm and a 
length between loading points of 1 m. The knife 
edges were separated by 200mm. A dial gauge 
accurate to 10#m was used to record the central 
deflection. 

The output and strain were calibrated under 
bridge supply conditions which were sufficiently low 
to avoid heating of the polymeric material of 
composition 1. This was achieved by reducing the 
bridge supply voltage until the output of the bridge 
was stable for long periods. Poisson's ratio of the 
steel beam was also recorded in the strain region 
100 × 10 - 6  to 600 x 10 -6 as a check on accuracy. 

2.3 Measurement of Young's modulus and strength 
The elastic modulus of the suspensions was meas- 
ured by using a dynamic Rheometrics solids analyser 
RSAII with three-point bending mode in the 
temperature range 35°C to 160°C while composition 
6 was tested from 0°C to 165°C. A frequency of 
6.28 rad s- 1 and a strain of 500 × 10 -6 were used. 
The samples were 3 mm in thickness, 6-8 mm in 
width and 55 mm in length and were cut from the 
samples used for Poisson's ratio measurement. The 
distance between the outer loading points was 
48 ram. The test pieces were annealed at 130°C for 
1 h under vacuum. Measurements were made at 4°C 
steps with a soak time of 1 min after the chamber 
had reached the set temperature. The load was auto- 
matically adjusted after every two measurements. 

Young's modulus was also measured using an 
Instron testing machine (Model 1195) and an 
extensometer at temperatures from 21°C to 70°C at 
a cross-head speed of 2mm min-1. A controlled 
temperature cabinet was used and samples were held 
at each temperature for 10 min before testing. The 
extensometer (Instron Model G51-14MA) had a 
temperature induced error of 0-3% but since it was 
reset to zero at each temperature, the manufacturer's 
quoted error of 5% is superimposed. Values of 
secant modulus were also obtained from the four- 
point loading strain gauge assembly by static 
loading. 

The tensile strength of composition 6 was 
measured by using Instron Model 1195 in the 
temperature range 20°C to 120°C. The cross-head 
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speed was 5 mm min-1. The samples were held for 
10min in a fan-assisted oven at the desired 
temperature before testing. The temperature was 
measured by a mercury in glass thermometer with 
accuracy + 0"5°C. 

3 Results and Discussion 

3.1 Poisson's ratio of particle filled suspensions 
The strain in the outermost fibre of the calibration 
beam calculated from small deflection beam theory 
was a linear function of output from the bridge in the 
range 40 to 600 microstrain with a linear regression 
coefficient of 0-9998. The maximum error introduced 
by using the linear relation to calculate strain in the 
range 200-600 microstrain was greatest at low strain 
and gave rise to a maximum error of 7% in Poisson's 
ratio. Poisson's ratio for the steel beam measured in 
the range 200 to 600 microstrain was 0-28 and should 
be compared with the literature value of 0"27. 7 The 
power dissipated in the strain gauge was 0"33 mW 
corresponding to 0.055 kW m-2 and was sufficiently 
]ow to effect a negligible temperature increase when 
the gauges were attached to the unfilled organic 
vehicle (composition 1) which has the lowest thermal 
diffusivity. 

The annealing of injection-moulded ceramic 
suspensions has been shown to affect thermal 
expansion coefficient 8 and its effect on Poisson's 
ratio was determined using composition 6. Poisson's 
ratio for the unannealed sample was 0"286 + 0-004 
for 30 measurements. After annealing at 130°C for 
l h in vacuo the corresponding mean and standard 
deviations were 0"285 _+ 0"005 for five measurements, 
indicating that annealing has an insignificant effect 
on Poisson's ratio. 

The relationship between ceramic volume loading 
and Poisson's ratio is shown in Fig. 1. With an 
increase in ceramic volume loading, the Poisson's 
ratio decreases as expected. The straight line 
represents the volumetric law of mixtures taking the 
Poisson's ratio of alumina as 0-25 after Coble & 
Kingery. 9 It may be seen that Poisson's ratio for 
compositions 3 to 6 with ceramic volume loadings of 
40 to 56vo1.% was much smaller than those 
calculated from the volumetric mixing law. The 
deviation is reflected in the thermal expansion data 
reported previously. 5 It can be speculated that the 
deviation is attributable to the volume fraction of 
adsorbed organic matter which increases as ceramic 
volume fraction increases. 6 It is well known that 
immobile polymer adsorbates perturb the mechan- 
ical properties of polymer composites. 1° For the 
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Thc effect of ceramic volume fraction on Poisson's 
ratio. 

purposes of quantitative prediction, however, it is of 
interest to compare the form of the dependence of 
viscosity on ceramic volume loading for these 
suspensions. It was found that viscosity approached 
infinity as particles came into contact at a ceramic 
volume fraction of about 0"68. 6 Thereafter ceramic 
volume fraction in the binary system cannot be 
increased for a given powder. 

Thus in Fig. 2 Poisson's ratio is plotted as a 
function of relative ceramic volume fraction V~ Vmax. 
The linear relationship is excellent and this method 
can be used to predict Poisson's ratio of the mixtures 
to an accuracy of 7%, provided Vmax is known from 
viscosity measurements. An analogous argument 
could be used to explain the effect of ceramic loading 
on thermal expansion in the solid state. 5 

While it is reasonable to assume that at V < Vma ~, 
dispersed particles are surrounded by an organic 
phase and that at Vma x particles make contact, it does 
not follow that a system of contacting particles 
presents a Poisson's ratio identical to the bulk. On 
the one hand, the system of contacting particles 
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could be considered as a porous body with porosity 
Vp for which tl 

V = Vo - C V p  (1) 

where v 0 is the Poisson's ratio of the dense ceramic 
and C is a constant equal to 0.35 for alumina in the 
range 0 < Vp < 0.05. On the other hand, interstitial 
space between contacting particles is entirely filled 
with an organic phase of Poisson's ratio 0.45, which 
can be expected to increase Poisson's ratio of such a 
composite. The experimental value at Vma x remains 
inaccessible because of the difficulties of  fabrication. 
The approach used in Fig. 2 therefore only has 
empirical status. 

The Poisson's ratio of organic vehicle can itself be 
estimated by using the volumetric law of mixtures, 
since the bulk moduli of different organic compo- 
nents are not very large. Poisson's ratio was taken as 
0.40 and 0.49 for isotactic polypropylene and atactic 
polypropylene respectively. 5 If the effect of stearic 
acid is ignored, this gives a predicted value of 0.447 
which, compared with the experimental results, is in 
error by 2%. 

The dependence of Poisson's ratio on strain is 
shown in Fig. 3. It is seen that under low strains (less 
than 900 x 10-6) the effect of strain on Poisson's 
ratio is very small. 

3.2 Young's modulus measurements 
The nonlinear relationship between load and 
deflection for organic vehicles based on semi- 
crystalline polymers or waxes complicates the 
stress analysis in mouldings. Furthermore, the 
time-dependent effects in a polymer with very 
low crystallinity complicate measurement. Three 
methods were therefore used and are compared. 
Conventional stress-strain curves in uniaxial ten- 
sion were obtained by the standard method 12 for 
composition 6. Static loading measurement in four- 
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Tensile deformation curves for composit ion 6 at 
20-70°C. 

point bending using strain gauges offers a simple 
procedure which gives Poisson's ratio and secant 
modulus and was used for all compositions at 
room temperature. The dynamic modulus at low 
frequency (1 Hz) was also obtained in three-point 
bending mode over wide temperature and ceramic 
volume loading ranges. 

Figure 4 shows tensile stress-strain curves for 
composition 6 at temperatures up to 70°C (the limit 
for the extensometer). These fit the general 
relationship 

a = Be" (2) 

and the values of B and n obtained from a least 
squares regression analysis of eqn (2) are shown 
in Table 2. At room temperature the composite 
approximates to a linear elastic solid, but the load- 
deflection curves deviate from linearity significantly 
as the temperature rises and this is reflected in a 
decreasing value of n. 

The secant moduli obtained from static loading 
experiments in four-point bending with strain 
gauges are shown in Table 3 for compositions 1-6 at 
room temperature. The secant modulus obtained 
from the uniaxial tensile tests at 500 microstrain for 
composition 6 at room temperature is given for 
comparison. The method is simple to set up but 
offers a less exact result because at about 400 

Table 2. Results of  uniaxial tensile tests for composition 6 at 
various temperatures 

Temperature B n Regression coefficient 
(°C) (GPa) 

20 7'66 1-00 1 
40 0"40 0"66 0"989 
50 0'17 0'63 0"991 
60 0'20 0-74 0"986 
70 0'08 0-64 0.994 
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Table 3. Secant moduli at room temperature from static loading 

Composition number Secant modulus (G Pa) 
500 Ire,) 

1 0'6 
2 1"1 
3 2"6 
4 2"9 
5 5"7 
6 7"9 
& 7"7 

Table 4. The dependence of Young's modulus on temperature 
(logE= logE o -  bT; 35 < T< 140C) 

Composition log E o b Regression coefficient 

1 8-86 0-0127 - 0.987 
2 9-37 0.0130 - 0.997 
3 9.58 0.0126 -0.999 
4 9.73 0-0136 - 0.999 
5 9-93 0-0143 - 0.999 
6 10-29 0-0132 - 0.999 

From uniaxial tensile tests. 

microstrain time-dependent deformation is notice- 
able. It is difficult to apply to compositions wherein 
time-dependent deformation occurs or at elevated 
temperatures. 

The complete variation in elastic modulus with 
temperature and composition was obtained from 
dynamic mechanical analysis in three-point bending 
at 1 Hz and the results are shown in Fig. 5. Up to 
140°C, which represents the softening point, the 
logarithm of Young's modulus decays linearly with 
temperature. The curves can be approximated by a 
general expression: 

log E --- log E o - b T  (3) 

and the constants E o and b are given in Table4 
together with the linear regression coefficient for the 
logarithmic straight line in the temperature range 
40-140°C (0-140°C for composition 6). Above 
140°C the crystalline fraction of the organic vehicle 
melts and the modulus decreases steeply. 

It can be seen that as the ceramic volume fraction 
increases, the softening temperatures increase slight- 
ly. The addition of  56 vol.% ceramic increases the 

softening point of the unfilled polymer by about 
10~C. A similar effect is seen in the elevation of  glass 
transition temperature in filled polymers and is 
attributed to the influence of  high-energy internal 
surfaces on the conformation of adjacent polymer 
molecules. ~3 The elastic moduli for composition 6, 
measured by different methods, are compared in 
Table5. At 20°C this material is approximately 
linearly elastic and hence the secant and tangent 
moduli coincide. The strain gauge secant modulus is 
similar for the same reason showing that this simple 

Table 5. Comparison of elastic modulus determinations for 
composition 6 

Temperature Elastic modulus ( G Pa) 
(C) 

Uniaxial Unia.rial Strain D)'namic 
tension tension gauge (1 H:. 500 fte,) 

(tangent) (secant (secant 
(5001u:) 500 7001u:) 

20 7'7 7"7 7'8 8'3 
40 6.4 5"2 6'0 
50 4'9 3"0 4"4 
60 1'7 1.6 -- 3"2 
70 1'5 1"3 2"4 
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test can give a good estimate of elastic modulus as 
well as Poisson's ratio under the conditions dis- 
cussed. The dynamic elastic moduli at each tem- 
perature are slightly larger than the secant moduli 
under uniaxial tension for two reasons. In the 
first place they are measured at a higher strain rate 
of 1000 x 10-6S - l  as opposed to 290 x 1 0 - 6 S  -1  

and the organic vehicle is a strain rate-sensitive 
polymer. In the second place, they are measured in a 
bending mode on materials which are not linearly 
elastic (Table 2). Hence the stress does not change 
linearly from the outer fibre of  the beam to the 
neutral axis. The modulus is calculated from the 
apparent stress in the outermost fibre assuming 
linear elasticity, O'max, at a fixed strain of 500 x 10-6 
and compared with the 500 x 10-6 secant modulus 
in uniaxial tension at the same strain in Table 5. The 
true stress a~,ax in the outer fibre is therefore smaller 
than for a linear elastic material for a given load 
according to Ref. 14: 

n + 2  
°'max-- 3 O'max (4) 

so that the true modulus is lower than the apparent 
modulus. The difference is accentuated at higher 
temperatures as n deviates further from unity. 

3.3 The volume fraction dependence of elastic 
modulus 
There are a number of models for the shear modulus 
G* and bulk modulus K* of multiphase materials. 
The most widely used give the upper and lower 
bounds and were derived by Hashin & Shtrikman: 15 

G* = G1 + 
V 

(5a) 
1 6(K, + 2G,). (1 - V) t 

G2 - G1 5G1(3K1 + 4G1) 

1 - V  
(5b) 

1 6(K 2 + 2G/) 
- - +  V 
G 1 - G 2 5 G z ( 3 K  2 + 4G/)" 

G* = G 2 + 

where V is the volume loading of  the dispersed 
phase. Subscripts u and 1 refer to the upper and 
lower bounds respectively. T h e  shear modulus G 
and bulk modulus K can be expressed in terms of 
Young's modulus: 

G = E/2(1 + v) and K = E/3 (1 - 2v) (6) 

where v is the Poisson's ratio, which has been 
discussed above. Equations (5a) and (5b) can be used 
for predicting the upper and lower bounds for 
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Ceramic Volume Fraction 
Relative dynamic elastic modulus as a function of 

ceramic volume loading (frequency, 1 Hz; temperature, 40°C). 1, 
eqn (5b); 2, eqn (5a) and eqn (11); 3, eqn (7); 4, eqn (8) (V m = x/6); 5, 
eqn (8) (V m = 0"68); 6, eqn (9); 7, eqn (12) (V m = 0-68, C = 0"25); 8, 

eqn (12) (Vm = 0"68, C =  0"70). 

Young's modulus of suspensions having different 
ceramic volume loading provided the variation in 
Poisson's ratio is incorporated. 

The usefulness of such predictive models is shown 
in Fig. 6 wherein the relative elastic moduli are 
calculated from the best straight lines in Fig. 5. The 
objective here is to obtain analytical expressions for 
elastic modulus as a function of temperature and 
ceramic volume fraction. It can be seen that the 
curve for the unfilled organic vehicle is not perfectly 
linear but shows a transition at about 60°C which 
corresponds to the melting of the stearic acid 
component  of the blend and was previously seen in 
the thermal expansion curve for this composition (5). 
The transition cannot be detected at higher volume 
loadings and this may be partly the result of  
interfacial factors. It means that relative modulus 
calculated at different temperatures is not constant 
and this effect is shown in Fig. 7 where the relative 
modulus is found from data points at individual 
temperatures. However, for the purpose of computer 
modelling of stresses in mouldings, the generalised 
eqn (3) is preferable. 

The Young's modulus of alumina was taken as 
380 GN m-2.16 It is seen that the upper bound is far 
away from the experimental results. This arises 
because the Young's modulus of alumina is much 
larger than that of the organic binder. The lower 
bound is much smaller than the experiment results, 
especially at high volume loadings. The bounds are 
widely separated because of the large difference in 
modulus of the constituents and, while reported 
experimental results generally fall within them, their 
use is limited if the objective is to predict elastic 
modulus of ceramic injection moulding suspensions 
from a knowledge of  binder and ceramic properties. 
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For dilute suspensions, Hashin ~ 7 gives an alterna- 
tive model 

K* 3(1 - -  Vl)(1 - -  K z / K ~ ) V  
= 1 (7a) 

K 1 2(1 -- 2vl) + (1 +vl)(Kz/K1) 

which can be simplified as: 

K *  = K 1 + 
( K 2 - K 1 ) V  

1 + [ ( K  2 - K~)/(K~ +~G1)  ] 

Nielsen 2~ showed that the modulus of composites 
can be generalised as: 

M I + A B V  
- ( 9 )  

M 1 1 -- B~ V 

where M is any modulus, shear, Young's or bulk. 

(7b) and 

Once again the variation in Poisson's ratio must be 
incorporated and the curve for eqn (7) is shown in 
Fig. 6. Although it is close to the experimental results 
at low volume loadings the deviation is high at high 
ceramic volume loadings. Hashin ~7 also offers a 
composite spheres model which turns out to be the 
same as the lower bound in eqn (5a). 

For concentrated suspensions based on cubic 
packing geometry Christensen ~8 suggests a volume 
dependence model for shear moduli: 

G 3n 
G~ - 1611 - (Vmax) 1/3] (8) 

For cubic packing V m a x = n / 6  which is slightly 
smaller than the ceramic volume loading of  com- 
position 6. Inserting Vm,x=0"68 obtained from 
viscosity measurements 6 also gives a curve which 
can be compared with the experimental results 
(Fig. 6). 

The theoretical equations for viscosity and shear 
modulus should be of  the same form; the rate of  
shear in the viscosity equation being replaced by the 
shear strain in the modulus equation. 19 Lewis 20 and 

A = K  e - 1 

B -  M2/M1 - 1 
M 2 / M  1 + A 

where K e is a generalised Einstein coefficient and is 
2.5 for spherical inclusions in a liquid. The factor 
depends on the maximum packing fraction V m of  the 
filler. It is defined as: 

Vm a x / .  V (10) 

The calculated results from eqn (9) are also shown in 
Fig. 6. They give a better fit to the measured results, 
but at high volume loading still give a large error. 
Batchelor & Green 22 estimate the zero shear rate 
relative viscosity using a series in ascending powers 
of  V up to V 2, and deduce the shear modulus: 

G / G  1 = 1 + 2S-V+ (5.2_+ 0-3)V 2 (11) 

For  high ceramic volume loading, this is also much 
smaller than the experimental results as shown in 
Fig. 6 and is nearly the same as Hashin's lower 
bound. 

In the measurement  of  viscosity of  ceramic 
suspensions it has been shown that  Chong's  
equation with slight modification gives a good fit to 
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experiment for these ceramic injection moulding 
compositions: 6 

( Vma x - -  CV) 2 
q r = \  V~-~-~ V- (12) 

Using the same equation for Young's modulus, 
replacing qr by E / E  o, curves 7 and 8 in Fig. 6 are 
obtained, which were calculated by taking Vm,x = 
0"68 and C = 0"25 and 0"70 respectively. It is shown 
that when C =  0.25 a good fit to the experimental 
result is obtained as was the case for viscosity at 
constant shear stress. 6 

The problem presented by the ceramic volume 
fraction dependence of elastic modulus is that, while 
experimental results generally fall within the Hashin 
& Shtrikman bounds, individual models do not fit 
data for the wide range of composites studied, 
especially at high volume loadings. In this work, an 
equation relevant to viscosity correlates well with 
the elastic modulus and it will be interesting to see if 
this is generally true for ceramic injection moulding 
suspensions. If so it largely eliminates the experi- 
mental determination of moduli for different 
ceramic loadings and diverse ceramics. 
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Tensile strength and strain at failure as a function of 
temperature for composition 6. 

polypropylene, application of volumetric law of 
mixtures gives a Young's modulus of 0.4GPa at 
20°C, which is somewhat lower than the secant 
modulus of 0"6GPa from static loading and the 
0.7 GPa deduced by short extrapolation in Fig. 5. 
The use of group contributions therefore appears to 
be less successful with elastic modulus prediction 
than was the case for thermal properties of organic 
vehicle. 4 

3.4 Predicting the Young's modulus of the organic 
vehicle 
Since ceramic injection moulding practitioners use a 
wide range of organic species, it is of interest to see 
how effectively Young's modulus for the unfilled 
materials can be predicted by using group con- 
tributions. In this way, elastic modulus as a function 
of ceramic volume fraction could be estimated with 
sufficient accuracy for computer modelling from a 
knowledge of the relative viscosity curve alone. Van 
Krevelen 23 discusses procedures for the prediction 
of bulk modulus which can be expressed as: 

K =  p ~ (13) 

where p is the density, U is the Rao function and V is 
the molar volume. For polypropylene the Rao 
function, which behaves as an additive molar 
quantity, is 2716cm 1°/3 mol-1 s-1/3 and the molar 
volume is 48"3 × 10 - 6 m 3 mol -  1. The densities of the 
atactic and isotactic polypropylene used in this work 
were 870 and 905 kg m-3  respectively. These give 
predicted bulk moduli and Young's moduli of 
2.69GPa and 0.16GPa for atactic polypropylene 
and 2.86GPa and l '72GPa for isotactic poly- 
propylene, respectively. Poisson's ratio was taken as 
0.49 and 0.40 for atactic and isotactic polypropylene 
respectively. If, as a simplification, the stearic acid 
content, which is small, is considered as atactic 

3.5 The temperature dependence of tensile strength 
The tensile strength-temperature relationship for 
composit ion 6 is shown in Fig. 8. The room- 
temperature tensile strength was 8MPa and de- 
creases linearly up to 80°C. The unfilled organic 
vehicle (composition 1) has a yield stress of 0-47 MPa 
at 20°C, indicating that the tensile strength increases 
with ceramic volume fraction. The extension at 
failure, on the other hand, decreases markedly as 
expected as ceramic volume fraction increases. 
Mechanical properties of particulate composites are 
often attributed to the extent of the acid-base 
interaction at the interface and experimental 
justification for this is gradually accumulating. 24- 26 

4 Conclusions 

Procedures have been established for the estimation 
of mechanical properties of ceramic injection 
moulding suspensions for the purpose of computer 
modelling of stress distribution in mouldings with 
experimental economy. A static four-point bending 
jig with strain gauges can be used for Poisson's ratio 
determination but Poisson's ratio can be predicted 
from relative ceramic volume fraction, provided 
Vmax is known from viscosity measurements. Vol- 
umetric rule of mixtures can be used to obtain 
Poisson's ratio of the organic vehicle. The elastic 



Mechanical properties o f  injection moulding suspensions 163 

modulus of suspensions can be expressed in logarith- 
mic form as a function of temperature below the 
softening point region. The elastic modulus of 
suspensions relative to the modulus of the unfilled 
vehicle can be expressed by a relationship analogous 
to the relative viscosity-volume loading relation, but 
conventional expressions for the elastic modulus of  
particle-filled composites fail to yield accurate 
predictions, because of the large difference in elastic 
modulus between ceramic and vehicle. The failure 
stress, as a function of temperature, requires 
experimental measurement and cannot be otherwise 
predicted at present. 
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